Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Gene ; 834: 146647, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1983091

ABSTRACT

Some patients suffering from the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) develop an exaggerated inflammatory response triggered by a "cytokine storm" resulting in acute respiratory distress syndrome (ARDS) with the concomitant activation of non-specific inflammatory reactivity in the circulatory system and other organs, leading to multiorgan failure, leaky vasculature, coagulopathies and stroke. Impairment of brain functions may also occur as dysregulations in immune function resulting from neuroendocrine interactions. In this study, we explored, by bioinformatics approaches, the interaction between the multiple inflammatory agents involved in SARS-CoV-2 and Ghrelin (Ghre) together with its receptor GHSR-1A, which are described as anti-inflammatory mediators, in order to investigate what could trigger the hyper-inflammatory response in some SARS-CoV-2 patients. In our analysis, we found several interactions of Ghre and GHSR-1A with SARS-CoV-2 interacting human genes. We observed a correlation between Ghre, angiotensin-converting enzyme 2 ACE2, toll-like receptors 9 (TLR9), and Acidic chitinase (CHIA), whereas its receptor GHSR-1A interacts with chemokine receptor 3 (CXCR3), CCR3, CCR5, CCR7, coagulation factor II (thrombin) receptor-like 1 (F2RL1), vitamin D receptor (VDR), Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and DDP4 in receptor dipeptidyl peptidase-4. To our knowledge, our findings show, for the first time, that Ghre and GHSR-1A may exert an immunomodulatory function in the course of SARS-Cov-2 infection.


Subject(s)
COVID-19 , COVID-19/complications , Disease Progression , Ghrelin , Humans , Immunity , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2
2.
Sci Rep ; 11(1): 21968, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1758310

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) initiated a global viral pandemic since late 2019. Understanding that Coronavirus disease (COVID-19) disproportionately affects men than women results in great challenges. Although there is a growing body of published study on this topic, effective explanations underlying these sex differences and their effects on the infection outcome still remain uncertain. We applied a holistic bioinformatics method to investigate molecular variations of known SARS-CoV-2 interacting human proteins mainly expressed in gonadal tissues (testis and ovary), allowing for the identification of potential genetic targets for this infection. Functional enrichment and interaction network analyses were also performed to better investigate the biological differences between testicular and ovarian responses in the SARS-CoV-2 infection, paying particular attention to genes linked to immune-related pathways, reactions of host cells after intracellular infection, steroid hormone biosynthesis, receptor signaling, and the complement cascade, in order to evaluate their potential association with sexual difference in the likelihood of infection and severity of symptoms. The analysis revealed that within the testis network TMPRSS2, ADAM10, SERPING1, and CCR5 were present, while within the ovary network we found BST2, GATA1, ENPEP, TLR4, TLR7, IRF1, and IRF2. Our findings could provide potential targets for forthcoming experimental investigation related to SARS-CoV-2 treatment.


Subject(s)
SARS-CoV-2 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL